# Conformal inflation in the metric-affine geometry

@article{Mikura2020ConformalII, title={Conformal inflation in the metric-affine geometry}, author={Yusuke Mikura and Yuichiro Tada and Shuichiro Yokoyama}, journal={EPL (Europhysics Letters)}, year={2020} }

Systematic understanding for classes of inflationary models is investigated from a viewpoint of the local conformal symmetry and the slightly broken global symmetry in the framework of the metric-affine geometry. In the metric-affine geometry, which is a generalization of the Riemannian one adopted in the ordinary General Relativity, the affine connection is an independent variable of the metric rather than given e.g. by the Levi-Civita connection as its function. Thanks to this independency… Expand

#### Tables from this paper

#### 11 Citations

(3 + 1)-formulation for gravity with torsion and non-metricity: II. The hypermomentum equation

- Physics
- Classical and Quantum Gravity
- 2021

In this article, we consider a particular case of metric-affine f(R) -gravity for f(R)=R , i.e. the metric-affine general relativity (MAGR). As a companion to the first article in the series, we… Expand

Cosmic inflation from broken conformal symmetry

- Physics
- 2021

Rong-Gen Cai, Yu-Shi Hao, and Shao-Jiang Wang CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China School of Fundamental… Expand

Isocurvature modes and non-Gaussianity in affine inflation

- Physics
- Physical Review D
- 2021

Inflationary dynamics driven by multiple fields, especially with nonminimal couplings, allow for highly interesting features such as isocurvature, non-Gaussianity, and preheating. In this paper, we… Expand

Metric-Affine Vector-Tensor Correspondence and Implications in $F(R,T,Q,\mathcal{T},\mathcal{D})$ gravity

- Physics
- 2021

We extend the results of antecedent literature on quadratic Metric-Affine Gravity by studying a new quadratic gravity action in vacuum which, besides the usual (non-Riemannian) EinsteinHilbert… Expand

Metric-Affine Version of Myrzakulov F(R,T,Q,T) Gravity and Cosmological Applications

- Physics
- Universe
- 2021

We derive the full set of field equations for the metric-affine version of the Myrzakulov gravity model and also extend this family of theories to a broader one. More specifically, we consider… Expand

Minimal
k
-inflation in light of the conformal metric-affine geometry

- Physics
- 2021

We motivate a minimal realization of slow-roll k-inflation by incorporating the local conformal symmetry and the broken global SO(1, 1) symmetry in the metric-affine geometry. With use of the… Expand

Quadratic Metric-Affine Gravity: Solving for the Affine-Connection

- Physics
- 2021

We consider the most general 11 parameter parity even quadratic Metric-Affine Theory whose action consists of the usual Einstein-Hilbert plus the 11 quadratic terms in torsion, non-metricity as well… Expand

Riemann tensor and Gauss–Bonnet density in metric-affine cosmology

- Physics
- 2021

We analytically derive the covariant form of the Riemann (curvature) tensor for homogeneous metric-affine cosmologies. That is, we present, in a cosmological setting, the most general covariant form… Expand

Scale-invariant quadratic gravity and inflation in the Palatini formalism

- Physics
- Physical Review D
- 2021

In the framework of classical scale invariance, we consider quadratic gravity in the Palatini formalism and investigate the inflationary predictions of the theory. Our model corresponds to a… Expand

β-function reconstruction of Palatini inflationary attractors

- Physics
- Journal of Cosmology and Astroparticle Physics
- 2021

Attractor inflation is a particularly robust framework for developing inflationary models that are insensitive to the details of the potential. Such models are most often considered in the metric… Expand

#### References

SHOWING 1-10 OF 48 REFERENCES

Metric-affine gravity and inflation

- Physics
- Physical Review D
- 2019

We classify the metric-affine theories of gravitation, in which the metric and the connections are treated as independent variables, by use of several constraints on the connections. Assuming the… Expand

Galileon and generalized Galileon with projective invariance in a metric-affine formalism

- Physics
- Physical Review D
- 2018

We study scalar-tensor theories respecting the projective invariance in the metric-affine formalism. The metric-affine formalism is a formulation of gravitational theories such that the metric and… Expand

The dynamics of metric-affine gravity

- Physics
- 2011

Metric-affine theories of gravity provide an interesting alternativeto General Relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent… Expand

Metric-affine f(R) theories of gravity

- Physics
- 2007

Abstract General Relativity assumes that spacetime is fully described by the metric alone. An alternative is the so called Palatini formalism where the metric and the connections are taken as… Expand

Conformal α-attractor inflation with Weyl gauge field

- Physics
- 2019

Conformal scaling invariance should play an important role for understanding the origin and evolution of universe. During inflation period, it appears to be an approximate symmetry, but how it is… Expand

Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance

- Physics
- 1995

In Einstein's gravitational theory, the spacetime is Riemannian, that is, it has vanishing torsion and vanishing nonmetricity (covariant derivative of the metric). In the gauging of the general… Expand

Universality class in conformal inflation

- Physics
- 2013

We develop a new class of chaotic inflation models with spontaneously broken conformal invariance. Observational consequences of a broad class of such models are stable with respect to strong… Expand

Local conformal symmetry in physics and cosmology

- Physics
- 2014

We show how to lift a generic non-scale invariant action in Einstein frame into a locally conformally-invariant (or Weyl-invariant) theory and present a new general form for Lagrangians consistent… Expand

The role of nonmetricity in metric-affine theories of gravity

- Physics
- 2014

The intriguing choice to treat alternative theories of gravity by means of the Palatini approach, namely elevating the affine connection to the role of independent variable, contains the seed of some… Expand

Weyl-Invariant Extension of the Metric-Affine Gravity

- Physics
- 2013

Metric-affine geometry provides a nontrivial extension of the general relativity where the metric and connection are treated as the two independent fundamental quantities in constructing the… Expand