## Abstract

Spontaneous symmetry breaking (SSB) is one of the basic aspects of collective phenomena such as phase transitions in statistical mechanics or ground-state excitations in field theory. In general, spectral analysis of SSB is related to the presence of a Goldstone boson particle. The explicit construction of the canonical variables (boson field operator and its adjoint) of this boson has so far been an open problem. In this paper, we consider the SSB of Bose-Einstein condensation in two models: the: so-called imperfect or mean field Bose gas (which is nothing but a perfect ideal Bose gas including the property of equivalence of ensembles), and the Bogoliubov weakly interacting Bose gas. For both we construct explicitly the Goldstone boson field variables. The remarkable result is that in both cases the field and its adjoint field are formed as the "fluctuation operators" respectively of the order parameter operator and of the generator of the broken symmetry. The notion of "fluctuation operator" is essential for our mathematical construction. We find that although the order parameter has a critical fluctuation, the generator of the broken symmetry has a squeezed fluctuation of the same inverse rate. Furthermore, we prove that this canonical pair of variables decouples from the other variables of the system, and that these fluctuations behave dynamically as long-wavelength sound waves or as oscillator variables.

Original language | English |
---|---|

Pages (from-to) | 1125-1161 |

Number of pages | 37 |

Journal | Journal of Statistical Physics |

Volume | 96 |

Issue number | 5-6 |

DOIs | |

Publication status | Published - Sep 1999 |

## Keywords

- spontaneous symetry breaking
- Goldstone theorem
- normal coordinates
- interacting Bose gases
- Bose-Einstein condensation
- quantum fluctuations